Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 13 de 13
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Beilstein J Nanotechnol ; 14: 1093-1105, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-38025198

RESUMO

In recent years, nanostructures with hexagonal polytypes of gold have been synthesised, opening new possibilities in nanoscience and nanotechnology. As bulk gold crystallizes in the fcc phase, surface effects can play an important role in stabilizing hexagonal gold nanostructures. Here, we investigate several heterostructures with Ge substrates, including the fcc and hcp phases of gold that have been observed experimentally. We determine and discuss their interfacial energies and optimized atomic arrangements, comparing the theory results with available experimental data. Our DFT calculations for the Au-fcc(011)/Ge(001) junction show how the presence of defects in the interface layer can help to stabilize the atomic pattern, consistent with microscopic images. Although the Au-hcp/Ge interface is characterized by a similar interface energy, it reveals large atomic displacements due to significant mismatch. Finally, analyzing the electronic properties, we demonstrate that Au/Ge systems have metallic character, but covalent-like bonding states between interfacial Ge and Au atoms are also present.

2.
Phys Rev Lett ; 130(12): 126205, 2023 Mar 24.
Artigo em Inglês | MEDLINE | ID: mdl-37027841

RESUMO

Structural superlubricity describes the state of greatly reduced friction between incommensurate atomically flat surfaces. Theory predicts that, in the superlubric state, the remaining friction sensitively depends on the exact structural configuration. In particular the friction of amorphous and crystalline structures for, otherwise, identical interfaces should be markedly different. Here, we measure friction of antimony nanoparticles on graphite as a function of temperature between 300 and 750 K. We observe a characteristic change of friction when passing the amorphous-crystalline phase transition above 420 K, which shows irreversibility upon cooling. The friction data is modeled with a combination of an area scaling law and a Prandtl-Tomlinson type temperature activation. We find that the characteristic scaling factor γ, which is a fingerprint of the structural state of the interface, is reduced by 20% when passing the phase transition. This validates the concept that structural superlubricity is determined by the effectiveness of atomic force canceling processes.

3.
Small ; 19(26): e2207263, 2023 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-36949495

RESUMO

Experimental results on the charge-state-dependent sputtering of metallic gold nanoislands are presented. Irradiations with slow highly charged ions of metallic targets were previously considered to show no charge state dependent effects on ion-induced material modification, since these materials possess enough free electrons to dissipate the deposited potential energy before electron-phonon coupling can set in. By reducing the size of the target material down to the nanometer regime and thus enabling a geometric energy confinement, a possibility is demonstrated to erode metallic surfaces by charge state related effects in contrast to regular kinetic sputtering.

4.
J Phys Chem B ; 127(1): 387-395, 2023 01 12.
Artigo em Inglês | MEDLINE | ID: mdl-36563061

RESUMO

The development of topography plays an important role when low-energy projectiles are used to modify the surface or analyze the properties of various materials. It can be a feature that allows one to create complex structures on the sputtered surface. It can also be a factor that limits depth resolution in ion-based depth profiling methods. In this work, we have studied the evolution of microdendrites on poly(methyl methacrylate) sputtered with a Cs 1 keV ion beam. Detailed analysis of the topography of the sputtered surface shows a sea of pillars with islands of densely packed pillars, which eventually evolve to fully formed dendrites. The development of the dendrites depends on the Cs fluence and temperature. Analysis of the sputtered surface by physicochemical methods shows that the mechanism responsible for the formation of the observed microstructures is reactive ion sputtering. It originates from the chemical reaction between the target material and primary projectile and is combined with mass transport induced by ion sputtering. The importance of chemical reaction for the formation of the described structures is shown directly by comparing the change in the surface morphology under the same dose of a nonreactive 1 keV xenon ion beam.


Assuntos
Césio , Polimetil Metacrilato , Dendritos
5.
Micron ; 130: 102800, 2020 03.
Artigo em Inglês | MEDLINE | ID: mdl-31855656

RESUMO

Analysis of microscope images is a tedious work which requires patience and time, usually done manually by the microscopist after data collection. The results obtained in such a way might be biased by the human who performed the analysis. Here we introduce an approach of automatic image analysis, which is based on locally applied Fourier Transform and Machine Learning methods. In this approach, a whole image is scanned by a local moving window with defined size and the 2D Fourier Transform is calculated for each window. Then, all the Local Fourier Transforms are fed into Machine Learning processing. Firstly, a number of components in the data is estimated from Principal Component Analysis (PCA) Scree Plot performed on the data. Secondly, the data are decomposed blindly by Non-Negative Matrix Factorization (NMF) into interpretable spatial maps (loadings) and corresponding Fourier Transforms (factors). As a result, the microscopic image is analyzed and the features on the image are automatically discovered, based on the local changes in Fourier Transform, without human bias. The user selects only a size and movement of the scanning local window which defines the final analysis resolution. This automatic approach was successfully applied to analysis of various microscopic images with and without local periodicity i.e. atomically resolved High Angle Annular Dark Field (HAADF) Scanning Transmission Electron Microscopy (STEM) image of Au nanoisland of fcc and Au hcp phases, Scanning Tunneling Microscopy (STM) image of Au-induced reconstruction on Ge(001) surface, Scanning Electron Microscopy (SEM) image of metallic nanoclusters grown on GaSb surface, and Fluorescence microscopy image of HeLa cell line of cervical cancer. The proposed approach could be used to automatically analyze the local structure of microscopic images within a time of about a minute for a single image on a modern desktop/notebook computer and it is freely available as a Python analysis notebook and Python program for batch processing.

6.
Nanomaterials (Basel) ; 8(10)2018 Oct 05.
Artigo em Inglês | MEDLINE | ID: mdl-30301148

RESUMO

We present NiO/Ni composite particles with face-centered cubic (fcc) structure prepared by a pulsed laser irradiation of NiO nanoparticles dispersed in liquid. The sizes of particles and the Ni content in NiO/Ni composites were controlled by tuning the laser parameters, such as laser fluence and irradiation time. We found that the weight fraction of Ni has a significant impact on magnetic properties of composite particles. Large exchange bias (HEB) and coercivity field (HC) were observed at 5 K due to the creation of heterojunctions at interfaces of ferromagnetic Ni and antiferromagnetic NiO. For the NiO/Ni composites with 80% of NiO we have observed the largest values of exchange bias (175 Oe) and coercive field (950 Oe), but the increase of Ni weight fraction resulted in the decrease of both HC and HEB values.

7.
Nanoscale ; 11(1): 89-97, 2018 Dec 20.
Artigo em Inglês | MEDLINE | ID: mdl-30226243

RESUMO

Reduced titanium oxide structures are regarded as promising materials for various catalytic and optoelectronic applications. There is thus an urgent need for developing methods of controllable formation of crystalline nanostructures with tunable oxygen nonstoichiometry. We introduce the Extremely Low Oxygen Partial Pressure (ELOP) method, employing an oxygen getter in close vicinity to an oxide during thermal reduction under vacuum, as an effective bottom-up method for the production of nanowires arranged in a nanoscale metallic network on a SrTiO3 perovskite surface. We demonstrate that the TiO nanowires crystallize in a highly ordered cubic phase, where single nanowires are aligned along the main crystallographic directions of the SrTiO3 substrate. The dimensions of the nanostructures are easily tunable from single nanometers up to the mesoscopic range by varying the temperature of reduction. The interface between TiO and SrTiO3 (metal and insulator) was found to be atomically sharp providing the unique possibility of the investigation of electronic states, especially since the high conductivity of the TiO nanostructures is maintained after room temperature oxidation. According to the growth model we propose, TiO nanowire formation is possible due to the incongruent sublimation of strontium and crystallographic shearing, triggered by the extremely low oxygen partial pressure (ELOP). The controlled formation of conductive nanowires on a perovskite surface holds technological potential for implementation in memristive devices, organic electronics, or for catalytic applications, and provides insight into the mechanism of nanoscale phase transformations in metal oxides. We believe that the ELOP mechanism of suboxide formation is suitable for the formation of reduced suboxides on other perovskite oxides and for the broader class of transition metal oxides.

8.
Phys Rev Lett ; 116(23): 233902, 2016 Jun 10.
Artigo em Inglês | MEDLINE | ID: mdl-27341235

RESUMO

Polycapillary x-ray focusing devices are built from hundreds of thousands of bent microcapillaries that are stacked into hexagonal arrays. We show that intrinsic point defects of the optics (e.g., missing or larger capillaries) lead to the formation of multiple x-ray images of an object positioned in the focal plane. These images can be recorded in parallel, and can provide spatial resolution that is limited by the defect size and not by the focal spot size. In a proof-of-principle experiment, we demonstrate submicron resolution, which has not yet been achieved with polycapillary focusing optics. Tailored optics with a controlled distribution of "defects" could be used for multimodal nanoscale x-ray imaging with laboratory setups.

9.
Anal Biochem ; 511: 52-60, 2016 10 15.
Artigo em Inglês | MEDLINE | ID: mdl-27318241

RESUMO

There are several techniques like time of flight secondary ion mass spectrometry (ToF SIMS) that require a special protocol for preparation of biological samples, in particular, those containing single cells due to high vacuum conditions that must be kept during the experiment. Frequently, preparation methodology involves liquid nitrogen freezing what is not always convenient. In our studies, we propose and validate a protocol for preparation of single cells. It consists of four steps: (i) paraformaldehyde fixation, (ii) salt removal, (iii) dehydrating, and (iv) sample drying under ambient conditions. The protocol was applied to samples with single melanoma cells i.e. WM115 and WM266-4 characterized by similar morphology. The surface and internal structures of cells were monitored using atomic force, scanning electron and fluorescent microscopes, used to follow any potential protocol-induced alterations. To validate the proposed methodology for sample preparation, ToF SIMS experiments were carried out using C60(+) cluster ion beam. The applied principal component analysis (PCA) revealed that chemical changes on cell surface of melanoma cells were large enough to differentiate between primary and secondary tumor sites. Subject category: Mass spectrometry.


Assuntos
Manejo de Espécimes/métodos , Espectrometria de Massa de Íon Secundário/métodos , Linhagem Celular Tumoral , Humanos
10.
J Diabetes Res ; 2016: 5741518, 2016.
Artigo em Inglês | MEDLINE | ID: mdl-28105442

RESUMO

The aim of this study was to check the relationship between the density of urinary EVs, their size distribution, and the progress of early renal damage in type 2 diabetic patients (DMt2). Patients were enrolled to this study, and glycated hemoglobin (HbA1c) below 7% was a threshold for properly controlled diabetic patients (CD) and poorly controlled diabetic patients (UD). Patients were further divided into two groups: diabetic patients without renal failure (NRF) and with renal failure (RF) according to the Glomerular Filtration Rate. Density and diameter of EVs were determined by Tunable Resistive Pulse Sensing. Additionally, EVs were visualized by means of Transmission and Environmental Scanning Electron Microscopy. Nano-liquid chromatography coupled offline with mass spectrometry (MALDI-TOF-MS/MS) was applied for proteomic analysis. RF had reduced density of EVs compared to NRF. The size distribution study showed that CD had larger EVs (mode) than UD (115 versus 109 nm; p < 0.05); nevertheless the mean EVs diameter was smaller in controls than in the CD group (123 versus 134 nm; p < 0.05). It was demonstrated that EVs are abundant in urine. Albumin, uromodulin, and number of unique proteins related to cell stress and secretion were detected in the EVs fraction. Density and size of urinary EVs reflect deteriorated renal function and can be considered as potential renal damage biomarkers.


Assuntos
Diabetes Mellitus Tipo 2/fisiopatologia , Nefropatias Diabéticas/diagnóstico , Vesículas Extracelulares , Rim/fisiopatologia , Idoso , Biomarcadores/urina , Diabetes Mellitus Tipo 2/urina , Nefropatias Diabéticas/fisiopatologia , Nefropatias Diabéticas/urina , Feminino , Taxa de Filtração Glomerular/fisiologia , Humanos , Masculino , Pessoa de Meia-Idade
11.
Sci Rep ; 5: 9849, 2015 May 08.
Artigo em Inglês | MEDLINE | ID: mdl-25952016

RESUMO

The generation of nanoalloys of immiscible metals is still a challenge using conventional methods. However, because these materials are currently attracting much attention, alternative methods are needed. In this article, we demonstrate a simple but powerful strategy for the generation of a new metastable alloy of immiscible metals. Au(1-x)Ni(x) 3D structures with 56 at% of nickel in gold were successfully manufactured by the pulsed laser irradiation of colloidal nanoparticles. This technology can be used for preparing different metastable alloys of immiscible metals. We hypothesise that this technique leads to the formation of alloy particles through the agglomerations of nanoparticles, very fast heating, and fast cooling/solidification. Thus, we expect that our approach will be applicable to a wide range of inorganic solids, yielding even new metastable solids that fail to be stable in the bulk systems, and therefore do not exist in Nature.

12.
AAPS PharmSciTech ; 16(3): 623-35, 2015 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-25501870

RESUMO

The influence of alkaline and the neutral grade of magnesium aluminometasilicate as a porous solid carrier for the liquid self-emulsifying formulation with ibuprofen is investigated. Ibuprofen is dissolved in Labrasol, then this solution is adsorbed on the silicates. The drug to the silicate ratio is 1:2, 1:4, and 1:6, respectively. The properties of formulations obtained are analyzed, using morphological, porosity, crystallinity, and dissolution studies. Three solid self-emulsifying (S-SE) formulations containing Neusilin SG2 and six consisting of Neusilin US2 are in the form of powder without agglomerates. The nitrogen adsorption method shows that the solid carriers are mesoporous but they differ in a specific surface area, pore area, and the volume of pores. The adsorption of liquid SE formulation on solid silicate particles results in a decrease in their porosity. If the neutral grade of magnesium aluminometasilicate is used, the smallest pores, below 10 nm, are completely filled with liquid formulation, but there is still a certain number of pores of 40-100 nm. Dissolution studies of liquid SEDDS carried out in pH = 1.2 show that Labrasol improves the dissolution of ibuprofen as compared to the pure drug. Ibuprofen dissolution from liquid SE formulations examined in pH of 7.2 is immediate. The adsorption of the liquid onto the particles of the silicate causes a decrease in the amount of the drug released. Finally, more ibuprofen is dissolved from S-SE that consist of the neutral grade of magnesium aluminometasilicate than from the formulations containing the alkaline silicate.


Assuntos
Silicatos de Alumínio/química , Portadores de Fármacos/química , Emulsões/química , Compostos de Magnésio/química , Magnésio/química , Pós/química , Adsorção , Química Farmacêutica/métodos , Ibuprofeno/química , Porosidade , Solubilidade
13.
Beilstein J Nanotechnol ; 5: 1463-71, 2014.
Artigo em Inglês | MEDLINE | ID: mdl-25247129

RESUMO

By using scanning tunnelling potentiometry we characterized the lateral variation of the electrochemical potential µec on the gold-induced Ge(001)-c(8 × 2)-Au surface reconstruction while a lateral current flows through the sample. On the reconstruction and across domain boundaries we find that µec shows a constant gradient as a function of the position between the contacts. In addition, nanoscale Au clusters on the surface do not show an electronic coupling to the gold-induced surface reconstruction. In combination with high resolution scanning electron microscopy and transmission electron microscopy, we conclude that an additional transport channel buried about 2 nm underneath the surface represents a major transport channel for electrons.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...